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Abstract

We propose a sparse and low-rank tensor regression model to relate a univariate
outcome to a feature tensor, in which each unit-rank tensor from the CP decom-
position of the coefficient tensor is assumed to be sparse. This structure is both
parsimonious and highly interpretable, as it implies that the outcome is related
to the features through a few distinct pathways, each of which may only involve
subsets of feature dimensions. We take a divide-and-conquer strategy to simplify
the task into a set of sparse unit-rank tensor regression problems. To make the
computation efficient and scalable, for the unit-rank tensor regression, we propose
a stagewise estimation procedure to efficiently trace out its entire solution path. We
show that as the step size goes to zero, the stagewise solution paths converge exactly
to those of the corresponding regularized regression. The superior performance of
our approach is demonstrated on various real-world and synthetic examples.

1 Introduction

Regression analysis is commonly used for modeling the relationship between a predictor vector
x ∈ RI and a scalar response y. Typically a good regression model can achieve two goals: accurate
prediction on future response and parsimonious interpretation of the dependence structure between
y and x [Hastie et al., 2009]. As a general setup, it fits M training samples {(xm, ym)}Mm=1 via
minimizing a regularized loss, i.e., a loss L(·) plus a regularization term Ω(·), as follows

min
w

1

M

∑M

m=1
L(〈xm,w〉, ym) + λΩ(w), (1)

where w ∈ RI is the regression coefficient vector, 〈·, ·〉 is the standard Euclidean inner product,
and λ > 0 is the regularization parameter. For example, the sum of squared loss with `1-norm
regularization leads to the celebrated LASSO approach [Tibshirani, 1996], which performs sparse
estimation of w and thus has implicit feature selection embedded therein.

In many modern real-world applications, the predictors/features are represented more naturally as
higher-order tensors, such as videos and Magnetic Resonance Imaging (MRI) scans. In this case, if
we want to predict a response variable for each tensor, a naive approach is to perform linear regression
on the vectorized data (e.g., by stretching the tensor element by element). However, it completely
ignores the multidimensional structure of the tensor data, such as the spatial coherence of the voxels.
This motivates the tensor regression framework [Yu and Liu, 2016, Zhou et al., 2013], which treats
each observation as a tensor X and learns a tensor coefficientW via regularized model fitting:

min
W

1

M

∑M

m=1
L(〈Xm,W〉, ym) + λΩ(W). (2)
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When `1-norm regularization is used, this formulation is essentially equivalent to (1) via vectorization.
To effectively exploit the structural information of Xm, we can impose a low-rank constraint onW
for Problem (2). Some authors achieved this by fixing the CANDECOMP/PARAFAC (CP) rank
ofW as a priori. For example, Su et al. [2012] assumedW to be rank-1. Since rank-1 constraint
is too restrictive, Guo et al. [2012] and Zhou et al. [2013] imposed a rank-R constraint in a tensor
decomposition model, but none of the above methods considered adding sparsity constraint as well to
enhance the model interpretability. Wang et al. [2014] imposed a restrictive rank-1 constraint onW
and also applied an elastic net regularization [Zou and Hastie, 2005]. Tan et al. [2012] imposed a
rank-R constraint and applied `1-norm regularization to factor matrices to also promote sparsity in
W . Signoretto et al. [2014] applied the trace norm (nuclear norm) for low-rank estimation ofW , and
Song and Lu [2017] imposed a combination of trace norm and `1-norm onW . Bengua et al. [2017]
showed that the trace norm may not be appropriate for capturing the global correlation of a tensor as
it provides only the mean of the correlation between a single mode (rather than a few modes) and the
rest of the tensor. In all the above sparse and low-rank tensor models, the sparsity is imposed onW
itself, which, does not necessarily lead to the sparsity on the decomposed matrices.

In this paper, we propose a sparse and low-rank tensor regression model in which the unit-rank
tensors from the CP decomposition of the coefficient tensor are assumed to be sparse. This structure
is both parsimonious and highly interpretable, as it implies that the outcome is related to the features
through a few distinct pathways, each of which may only involve subsets of feature dimensions.
We take a divide-and-conquer strategy to simplify the task into a set of sparse unit-rank tensor
factorization/regression problems (SURF) in the form of

min
W

1

M

∑M

m=1
(ym − 〈Xm,W〉)2 + λ‖W‖1, s.t. rank(W) ≤ 1,

To make the solution process efficient for the SURF problem, we propose a boosted/stagewise
estimation procedure to efficiently trace out its entire solution path. We show that as the step size
goes to zero, the stagewise solution paths converge exactly to those of the corresponding regularized
regression. The effectiveness and efficiency of our proposed approach is demonstrated on various
real-world datasets as well as under various simulation setups.

2 Preliminaries on Tensors
We start with a brief review of some necessary preliminaries on tensors, and more details can be found
in [Kolda and Bader, 2009]. We denote scalars by lowercase letters, e.g., a; vectors by boldfaced
lowercase letters, e.g., a; matrices by boldface uppercase letters, e.g., A; and tensors by calligraphic
letters, e.g.,A. We denote their entries by ai, ai,j , ai,j,k, etc., depending on the number of dimensions.
Indices are denoted by lowercase letters spanning the range from 1 to the uppercase letter of the index,
e.g., n = 1, · · · , N . Each entry of an N th-order tensor A ∈ RI1×···×IN is indexed by N indices
{in}Nn=1, and each in indexes the n-mode of A. Specifically, −n denotes every mode except n.
Definition 1 (Inner Product). The inner product of two tensors A,B ∈ RI1×···×IN is the sum of the
products of their entries, defined as 〈A,B〉 =

∑I1
i1=1 · · ·

∑IN
i1=1 ai1,···,iN bi1,···,iN .

It follows immediately that the Frobenius norm of A is defined as ‖A‖F=
√
〈A,A〉. The `1 norm

of a tensor is defined as ‖A‖1=
∑I1
i1=1 · · ·

∑IN
iN=1|Ai1,···,iN |.

Definition 2 (Tensor Product). Let a(n) ∈ RIn be a length-In vector for each n = 1, 2, · · · , N . The
tensor product of {a(n)}, denoted by A = a(1) ◦ · · · ◦ a(N), is an (I1 × · · · × IN )-tensor of which
the entries are given by Ai1,···,iN = a

(1)
i1
· · · a(N)

iN
. We call A a rank-1 tensor or a unit-rank tensor.

Definition 3 (CP Decomposition). Every tensor A ∈ RI1×···×IN can be decomposed as a weighted
sum of rank-1 tensors with a suitably large R as

A =
∑R

r=1
σr · a(1)r ◦ · · · ◦ a(N)

r , (3)

where σr ∈ R, a(n)r ∈ RI and ‖a(n)r ‖2= 1.
Definition 4 (Tensor Rank). The tensor rank of A, denoted by rank(A), is the smallest number R
such that the equality (3) holds.
Definition 5 (n-mode Product). The n-mode product of a tensor A ∈ RI1×···×IN by a vector
u ∈ RIn , denoted by A×n u, is an (I1 × · · · × In−1 × In+1 · · · × IN )-tensor of which the entries
are given by (A×n u)i1,...,in−1in+1,...,iN =

∑In
in=1 ai1,...,iNuin .
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3 Sparse and Low-Rank Tensor Regression

3.1 Model Formulation

For an N th-order predictor tensor Xm ∈ RI1×···×IN and a scalar response ym, m = 1, · · · ,M , we
consider the regression model of the form

ym = 〈Xm,W〉+ εm (4)

where W ∈ RI1×···×IN is an N th-order coefficient tensor, and εm is a random error term of
zero mean. Without loss of generality, the intercept is set to zero by centering the response and
standardizing the predictors as

∑M
m=1 y

m = 0;
∑M
m=1 Xmi1,···,iN = 0 and

∑M
m=1(Xmi1,···,iN )2/M = 1

for in = 1, · · · , In. Our goal is to estimateW with M i.i.d. observations {(Xm, ym)}Mm=1.

To reduce the complexity of the model and leverage the structural information in Xm, we assume
that the coefficient tensor W to be both low-rank and sparse. Specifically, we assume W can
be decomposed via CP decomposition as W =

∑R
r=1Wr =

∑R
r=1 σrw

(1)
r ◦ · · · ◦ w(N)

r , where
each rank-1 tensor Wr is possibly sparse, or equivalently, the vectors in its representation w

(n)
r ,

n = 1, . . . , N , are possibly sparse, for all r = 1, . . . , R.

Here we impose sparsity on the rank-1 components from CP decomposition – rather than onW itself
[Chen et al., 2012, Tan et al., 2012]. This adaption can be more beneficial in multiple ways: 1) It
integrates a finer sparsity structure into the CP decomposition, which enables a direct control of
component-wise sparsity; 2) It leads to an appealing model interpretation and feature grouping: the
outcome is related to the features through a few distinct pathways, each of which may only involve
subsets of feature dimensions; 3) It leads to a more flexible and parsimonious model as it requires
less number of parameters to recover the within-decomposition sparsity of a tensor than existing
methods which impose sparsity on the tensor itself, thus makes the model generalizability better.

A straightforward way of conducting model estimation is to solve the following optimization problem:

min
σr,w

(n)
r

1

M

∑M

m=1
(ym − 〈Xm,

∑R

r=1
σrw

(1)
r ◦ · · · ◦w(N)

r 〉)2 +
∑R

r=1

∑N

n=1
λr,n‖w(n)

r ‖1,

s.t. ‖w(n)
r ‖1= 1, n = 1, · · · , N, r = 1, · · · , R. (5)

where λr,n, r = 1, · · · , R, n = 1, · · · , N , are regularization parameters. This problem is very difficult
to solve because: 1) The CP rank R needs to be pre-specified; 2) As the CP decomposition may not
be unique, the pursue of its within-decomposition sparsity is highly non-convex and the problem may
suffer from parameter identifiability issues [Mishra et al., 2017]; 3) The estimation may involve many
regularization parameters, for which the tuning becomes very costly.

3.2 Divide-and-Conquer: Sequential Pursue for Sparse Tensor Decomposition

We propose a divide-and-conquer strategy to recover the sparse CP decomposition. Our approach is
based on the sequential extraction method (a.k.a. deflation) [Phan et al., 2015, Mishra et al., 2017],
which seeks a unit-rank tensor at a time and then deflates to find further unit-rank tensors from the
residuals. This has been proved to be a rapid and effective method of partitioning and concentrating
tensor decomposition. Specifically, we sequentially solve the following sparse unit-rank problem:

Ŵr = min
Wr

1

M

∑M

m=1
(ymr − 〈Xm,Wr〉)2 + λr‖Wr‖1+α‖Wr‖2F , s.t. rank(Wr) ≤ 1. (6)

where r is the sequential number of the unit-rank terms and ymr is the current residue of response with

ymr :=

{
ym, if r = 1

ymr−1 − 〈Xm, Ŵr−1〉, otherwise,

where Ŵr−1 is the estimated unit-rank tensor in the (r − 1)-th step, with tuning done by, e.g., cross
validation. The final estimator is then obtained as Ŵ(R) =

∑R
r=1 Ŵr. Here for improving the

convexity of the problem and its numerical stability, we have used the elastic net [Zou and Hastie,
2005] penalty form instead of LASSO, which is critical to ensure the convergence of the optimization
solution. The accuracy of the solution can be controlled simply by adjusting the values of λr and α.
Since we mainly focus on sparse estimation, we fix α > 0 as a small constant in numerical studies.
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As each Wr is of unit rank, it can be decomposed as Wr = σrw
(1)
r ◦ · · · ◦ w(N)

r with σr ≥ 0

and ‖w(n)
r ‖1= 1, n = 1, · · · , N . It is then clear that ‖Wr‖1= ‖σ̂rŵ(1)

r ◦ · · · ◦ ŵ
(N)
r ‖1=

σr
∏N
n=1‖w

(n)
r ‖1. That is, the sparsity of a unit-rank tensor directly leads to the sparsity of its

components. This allows us to kill multiple birds with one stone: by simply pursuing the element-
wise sparsity of the unit-rank coefficient tensor with only one tuning parameter λ, solving (6) can
produce a set of sparse factor coefficients ŵ(n)

r for n = 1, · · · , N simultaneously.

With this sequential pursue strategy, the general problem boils down to a set of sparse unit-rank
estimation problems, for which we develop a novel stagewise/boosting algorithm.

4 Fast Stagewise Unit-Rank Tensor Factorization (SURF)
For simplicity, we drop the index r and write the generic form of the problem in (6) as

Ŵ = min
W

1

M

∑M

m=1
(ym − 〈Xm,W〉)2 + λ‖W‖1+α‖W‖2F , s.t. rank(W) ≤ 1. (7)

Let W = σw(1) ◦ · · · ◦ w(N), where σ ≥ 0, ‖w(n)‖1= 1, and the factors w(n), n = 1, · · · , N
are identifiable up to sign flipping. Let y = [y1, · · · , yM ] ∈ RM , and X = [X 1, · · · ,XM ] ∈
RI1×···×IN×M . Then (7) can be reformulated as

min
σ,w(n)

1

M
‖y − σX ×1 w

(1) ×2 · · · ×N w(N)‖22+λσ
∏N

n=1
‖w(n)‖1+ασ2

∏N

n=1
‖w(n)‖22

s.t. σ ≥ 0, ‖w(n)‖1= 1, n = 1, · · · , N. (8)

Before diving into the stagewise/boosting algorithm, we first consider an alternating convex search
(ACS) approach [Chen et al., 2012, Minasian et al., 2014] which appears to be natural for solving
(7) with any fixed tuning parameter. Specifically, we alternately optimize with respect to a block of
variables (σ,w(n)) with others fixed. For each block (σ,w(n)), the relevant constraints are σ ≥ 0 and
‖w(n)‖1= 1, but the objective function in (8) is a function of (σ,w(n)) only through their product
σw(n). So both constraints are avoided when optimizing with respect to σw(n). Let ŵ(n) = σw(n)

and Z(−n) = X ×1 w
(1) ×2 · · · ×n−1 w(n−1) ×n+1 · · · ×N w(N), the subproblem boils down to

min
ŵ(n)

1

M
‖yT − Z(−n)Tŵ(n)‖22+αβ(−n)‖ŵ(n)‖22+λ‖ŵ(n)‖1, (9)

where β(−n) =
∏
l 6=n‖w(l)‖22. Once we obtain the solution ŵ(n), we can set σ = ‖ŵ(n)‖1 and

w(n) = ŵ(n)/σ to satisfy the constraints whenever ŵ(n) 6= 0. If ŵ(n) = 0, w(n) is no longer
identifiable, we then set σ = 0 and terminate the algorithm. Note that when α > 0, each subproblem
is strongly convex and the generated solution sequence is uniformly bounded, we can show that ACS
can converge to a coordinate-wise minimum point of (8) with properly chosen initial value [Mishra
et al., 2017]. The optimization procedure then needs to be repeated to a grid of tuning parameter
values for obtaining the solution paths of parameters and locating the optimal sparse solution along
the paths.

Inspired by the biconvex structure of (7) and the stagewise algorithm for LASSO [Zhao and Yu, 2007,
Vaughan et al., 2017], we develop a fast stagewise unit-rank tensor factorization (SURF) algorithm to
trace out the entire solution paths of (7) in a single run. The main idea of a stagewise procedure is
to build a model from scratch, gradually increasing the model complexity in a sequence of simple
learning steps. For instance, in stagewise estimation for linear regression, a forward step searches for
the best predictor to explain the current residual and updates its coefficient by a small increment, and
a backward step, on the contrary, may decrease the coefficient of a selected predictor to correct for
greedy selection whenever necessary. Due to the biconvex or multi-convex structure of our objective
function, it turns out that efficient stagewise estimation remains possible: the only catch is that, when
we determine which coefficient to update at each iteration, we always get N competing proposals
from N different tensor modes, rather than just one proposal in case of LASSO.

To simplify the notations, the objective function (9) is re-arranged into a standard LASSO as

min
ŵ(n)

1

M
‖ŷ − Ẑ(−n)ŵ(n)‖22+λ‖ŵ(n)‖1 (10)
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Algorithm 1 Fast Stagewise Unit-Rank Tensor Factorization (SURF)
Input: Training data D, a small stepsize ε > 0 and a small tolerance parameter ξ 2

Output: Solution paths of (σ, {w(n)}).
1: Initialization: take a forward step with ({̂i1, · · · , îN}, ŝ) = argmin

{i1,···,iN},s=±ε
J(s1i1 ,1i2 , · · · ,1iN ), and

σ0 = ε,w
(1)
0 = sign(ŝ)1în , w

(n)
0 = 1în(n 6= 1), λ0 = (J({0})− J(σ0, {w(n)

0 }))/ε. (11)

Set the active index sets I(n)0 = {̂in} for n = 1, · · · , N ; t = 0.
2: repeat
3: Backward step:

(n̂, în̂) := arg min
n,in∈I

(n)
t

J(ŵ
(n)
t + sin1in), where sin = −sign(ŵ

(n)
tin

)ε. (12)

if Γ(ŵ
(n̂)
t + sîn̂1în̂ ;λt)− Γ(ŵ

(n̂)
t ;λt) ≤ −ξ, then

σt+1 = ‖ŵ(n̂)
t + sîn̂1în̂‖1, w

(n̂)
t+1 = (ŵ

(n̂)
t + sîn̂1în̂)/σt+1, w

(−n̂)
t+1 = w

(−n̂)
t ,

λt+1 = λt, I
(n)
t+1 :=

{
I
(n̂)
t \ {̂in̂}, if w(n̂)

(t+1)̂in̂
= 0

I
(n)
t , otherwise.

4: else Forward step:

(n̂, în̂, ŝîn̂) := arg min
n,in,s=±ε

J(ŵ
(n)
t + sin1in), (13)

σt+1 = ‖ŵ(n̂)
t + ŝîn̂1în̂‖1, w

(n̂)
t+1 = (ŵ

(n̂)
t + ŝîn̂1în̂)/σt+1, w

(−n̂)
t+1 = w

(−n̂)
t ,

λt+1 = min[λt,
J(σt, {w(n)

t })− J(σt+1, {w(n)
t+1})− ξ

Ω(σt+1, {w(n)
t+1})− Ω(σt, {w(n)

t })
], I

(n)
t+1 :=

{
I
(n)
t ∪ {̂in}, if n = n̂

I
(n)
t , otherwise.

5: Set t = t+ 1.
6: until λt ≤ 0

using the augmented data ŷ = (y,0)T and Ẑ(−n) = (Z(−n),
√
αβ(−n)MI)T , where I is the

identity matrix of size In. We write the objective function (10) by

Γ(ŵ(n);λ) = J(ŵ(n)) + λΩ(ŵ(n)).

We use (σ, {w(n)}) to denote all the variables if necessary.

The structure of our stagewise algorithm is presented in Algorithm 1. It can be viewed as a boosting
procedure that builds up the solution gradually in terms of forward step (line 4) and backward step
(line 3)3. The initialization step is solved explicitly (see Lemma 1 below). At each subsequent
iteration, the parameter update takes the form ŵ(n) = ŵ(n) + s1in in either forward or backward
direction, where 1in is a length-In vector with all zeros except for a 1 in the in-th coordinate, s = ±ε,
and ε is the pre-specified step size controlling the fineness of the grid. The algorithm also keeps track
of the tuning parameter λ. Intuitively, the selection of the index (n, in) and the increment s is guided
by minimizing the penalized loss function with the current λ subject to a constraint on the step size.
Comparing to the standard stagewise LASSO, the main difference here is that we need to select the
“best” triple of (n, in, s) over all the dimensions across all tensor modes.

Problem (12) and (13) can be solved efficiently. By expansion of J(ŵ(n) + s1in), we have

J(ŵ(n) + s1in) =
1

M
(‖ê(n)‖22−2sê(n)TẐ(−n)1in + ε2‖Ẑ(−n)1in‖22),

2As stated in [Zhao and Yu, 2007], ξ is implementation-specific but not necessarily a user parameter. In all
experiments, we set ξ = ε2/2.

3Boosting amounts to combine a set of “weak learners” to build one strong learner, and is connected to
stagewise and regularized estimation methods. SURF is a boosting method since each backward/forward step
is in essence finding a weaker learner to incrementally improve the current learner (thus generate a path of
solutions).
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where ê(n) = ŷ− Ẑ(−n)ŵ(n) is a constant at each iteration. Then the solution at each forward step is

(n̂, în̂) := argmax
n,in

2|ê(n)TẐ(−n)1in |−εDiag(Ẑ(−n)TẐ(−n))T1in , ŝ = sign(ê(n)TẐ(−n̂)1în̂)ε,

and at each backward step is

(n̂, în̂) := argmin
n,in∈I(n)

2sign(ŵ
(n)
in

)êTẐ(−n)1in + εDiag(Ẑ(−n)TẐ(−n))T1in ,

where Diag(·) denotes the vector formed by the diagonal elements of a square matrix, and I(n) ⊂
{1, · · · , In} is the n-mode active index set at current iteration.

Computational Analysis. In Algorithm 1, the most time-consuming part are the calculations of
ê(n)TẐ(−n) andDiag(Ẑ(−n)TẐ(−n)), involved in both forward and backward steps. We further write
as ê(n)TẐ(−n) = (Z(−n)e − αβ(−n)Mŵ(n))T, Diag(Ẑ(−n)TẐ(−n)) = Diag(Z(−n)Z(−n)T) +
αβ(−n)M1(n), where e = yT − Z(−n)Tŵ(n) is a constant during each iteration but varies from one
iteration to the next, 1(n) is a length-In vector with all ones. At each iteration, the computational
cost is dominated by the update of Z(−n) (n 6= n̂), which can be obtained by

Z
(−n)
t+1 =

1

σt+1
(σtZ

(−n)
t + Z

(−n,−n̂)
t ×n̂ ŝ̂in̂1în̂), (14)

where (−n,−n̂) denotes every mode except n and n̂, which greatly reduces the computation.
Therefore, when n 6= n̂, the updates of Z(−n), e, Z(−n)e and Diag(Z(−n)TZ(−n)) requires
O(M

∏
s6=n,n̂ Is + 3MIn), O(MIn̂), O(MIn), O(MIn) operations, respectively, when n = n̂,

we only need to additionally update Z(−n̂)e, which requires O(MIn̂) operations. Overall the com-
putational complexity of our approach is O(M

∑N
n 6=n̂(

∏
s6=n,n̂ Is + 5In) + 2MIn̂) per iteration.

In contrast, the ACS algorithm has to be run for each fixed λ, and within each of such problems it
requires O(M

∏N
n=1 In) per iteration [da Silva et al., 2015].

5 Convergence Analysis
We provide convergence analysis for our stagewise algorithm in this section. All detailed proofs are
given in the Appendix A. Specifically, Lemma 1 and 2 below justify the validity of the initialization.
Lemma 1. Let X be the (N + 1)-mode matricization of X . Denote X = [x1, · · · ,xI ] where each
xi is a column of X, then

λmax = 2/M max{|xT
i y|; i = 1, · · · , I.}.

Moreover, letting i∗ = arg maxi|xT
i y| and (i∗1, · · · , i∗N ) represents its corresponding indices in

tensor space, then the initial non-zero solution of (11), denoted as (σ, {w(n)}), is given by

σ = ε,w(1) = sign(xT
i∗y)1i∗1 , w

(n) = 1i∗n ,∀n = 2, · · · , N.
where 1i∗n is a vector with all 0’s except for a 1 in the i∗n-th coordinate.

Lemma 2. If there exists s and in with |s|= ε, n = 1, · · · , N such that Γ(s1i1 ,1i2 , · · · ,1iN ;λ) ≤
Γ({0};λ), it must be true that λ ≤ λ0.
Lemma 3 shows that the backward step always performs coordinate descent update of fixed size
ε, each time along the steepest coordinate direction within the current active set, until the descent
becomes impossible subject to a tolerance level ξ. Also, the forward step performs coordinate descent
when λt+1 = λt. Lemma 4 shows that when λ gets changed, the penalized loss for the previous λ
can no longer be improved subject to a tolerance level ξ. Thus ε controls the granularity of the paths,
and ξ is a convergence threshold in optimizing the penalized loss with any fixed tuning parameter.
They enable convenient trade-off between computational efficiency and estimation accuracy.
Lemma 3. For any t with λt+1 = λt, we have Γ(σt+1, {w(n)

t+1};λt+1) ≤ Γ(σt, {w(n)
t };λt+1)− ξ.

Lemma 4. For any t with λt+1 < λt, we have Γ(ŵ
(n)
t + sin1in ;λt) > Γ(ŵ

(n)
t ;λt)− ξ.

Lemma 3 and Lemma 4 proves the following convergence theorem.

Theorem 1. For any t such that λt+1 < λt, we have (σt, {w(n)
t }) → (σ(λt), {w̃(n)(λt)}) as

ε, ξ → 0, where (σ(λt), {w̃(n)(λt)}) denotes a coordinate-wise minimum point of Problem (7).
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Table 1: Compared methods. α and λ are regularized parameters; R is the CP rank.
Methods LASSO ENet Remurs orTRR GLTRM ACS SURF
Input Data Type Vector Vector Tensor Tensor Tensor Tensor Tensor
Regularization `1 (w) `1/`2 (w) Nuclear/`1 (W) `2 (W(n)) `1/`2 (W(n)) `1/`2 (Wr) `1/`2 (Wr)
Rank Explored — — — Optimized Fixed Increased Increased
Hyperparameters λ α, λ λ1, λ2 α,R α, λ,R α, λ,R α, λ,R

6 Experiments

We evaluate the effectiveness and efficiency of our method SURF through numerical experiments on
both synthetic and real data, and compare with various state-of-the-art regression methods, including
LASSO, Elastic Net (ENet), Regularized multilinear regression and selection (Remurs) [Song and Lu,
2017], optimal CP-rank Tensor Ridge Regression (orTRR) [Guo et al., 2012], Generalized Linear
Tensor Regression Model (GLTRM) [Zhou et al., 2013], and a variant of our method with Alternating
Convex Search (ACS) estimation. Table 1 summarizes the properties of all methods. All methods
are implemented in MATLAB and executed on a machine with 3.50GHz CPU and 256GB RAM.
For LASSO and ENet we use the MATLAB package glmnet from [Friedman et al., 2010]. For
GLTRM, we solve the regularized CP tensor regression simultaneously for all R factors based on
TensorReg toolbox [Zhou et al., 2013]. We follow [Kampa et al., 2014] to arrange the test and
training sets in the ratio of 1:5. The hyperparameters of all methods are optimized using 5-fold cross
validation on the training set, with range α ∈ {0.1, 0.2, · · · , 1}, λ ∈ {10−3, 5 × 10−3, 10−2, 5 ×
10−2, · · · , 5 × 102, 103}, and R ∈ {1, 2, · · · , 50}. Specifically, for GLTRM, ACS, and SURF, we
simply set α = 1. For LASSO, ENet and ACS, we generate a sequence of 100 values for λ to cover
the whole path. For fairness, the number of iterations for all compared methods are fixed to 100. All
cases are run 50 times and the average results on the test set are reported. Our code is available at
https://github.com/LifangHe/SURF.

Synthetic Data. We first use the synthetic data to examine the performance of our method in different
scenarios, with varying step sizes, sparsity level, number of features as well as sample size. We
generate the data as follows: y = 〈X,W〉+ε, where ε is a random noise generated fromN (0, 1), and
X ∈ RI×I . We generate M samples {Xm}Mm=1 from N (0,Σ), where Σ is a covariance matrix, the
correlation coefficient between features xi,j and xp,q is defined as 0.6

√
(i−p)2+(j−q)2 . We generate

the true support as W =
∑R
r=1 σrw

(1)
r ◦w(2)

r , where each w
(n)
r ∈ RI , n = 1, 2, is a column vector

with N (0, 1) i.i.d. entries and normalized with `1 norm, the scalars σr are defined by σr = 1/r. To
impose sparsity on W, we set S% of its entries (chosen uniformly at random) to zero. When studying
one of factors, other factors are fixed to M = 500, I = 16, R = 50, S = 80.
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(a) ε = 0.01
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(b) ε = 0.1
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(c) ε = 0.5

Figure 1: Comparison of solution paths of SURF (solid line) and ACS (dashed line) with different
step sizes on synthetic data. The path of estimatesW for each λ is treated as a function of t = ‖W‖1.
Note that when the step size is small, the SURF path is almost indiscernible from the ACS path.

In a first step we analyze the critical parameter ε for our method. This parameter controls how close
SURF approximates the ACS paths. Figure 1 shows the solution path plot of our method versus
ACS method under both big and small step sizes. As shown by the plots, a smaller step size leads
to a closer approximation to the solutions of ACS. In Figure 2, we also provide a plot of averaged
prediction error with standard deviation bars (left side of y-axis) and CPU execution time (right side
of y-axis in mins) over different values of step size. From the figure, we can see that the choice of the
step size affects both computational speed and the root mean-squared prediction error (RMSE). The
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smaller the value of step size, the more accurate the regression result but the longer it will take to run.
In both figures, the moderate step size ε = 0.1 seems to offer a better trade-off between performance
and ease of implementation. In the following we fix ε = 0.1.
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Figure 2: Results to different val-
ues of step size ε.

Next, we examine the performance of our method with varying
sparsity level of W. For this purpose, we compare the prediction
error (RMSE) and running time (log min) of all methods on the
synthetic data. Figure 3(a)-(b) shows the results for the case
of S = {60, 80, 90, 95, 98} on synthetic 2D data, where S%
indicates the sparsity level of true W. As can be seen from
the plots, SURF generates slightly better predictions than other
existing methods when the true W is sparser. Moreover, as
shown in Figure 3(c), it is also interesting to note that larger
step sizes give much more sparsity of coefficients for SURF, this
explains why there is no value for some curves as the increase
of

∑
|W|1 in Figure 1(c).

Furthermore, we compare the prediction error and running time (log min) of all methods with
increasing number of features. Figure 4(a)-(b) shows the results for the case of I = {8, 16, 32, 64} on
synthetic 2D data. Overall, SURF gives better predictions at a lower computational cost. Particularly,
SURF and ACS have very similar prediction qualities, this matches with our theoretical result on
the solutions of SURF versus ACS. SURF achieves better predictions than other tensor methods,
indicating the effectiveness of structured sparsity in unit-rank tensor decomposition itself. In terms of
running time, it is clear that as the number of features is increased, SURF is significantly faster than
other methods.

Finally, Figure 5 shows the results with increasing number of samples. Overall, SURF gives better
predictions at a lower computational cost. Particularly, Remurs and orTRR do not change too much
as increasing number of samples, this may due to early stop in the iteration process when searching
for optimized solution.
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Figure 3: Results with increasing sparsity level (S%) of true W on synthetic 2D data (a)-(b), and (c)
sparsity results ofW versus step size for SURF.
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Figure 4: Results with increasing number of features on synthetic 2D data (a)-(b), and (c) real 3D
MRI data of features 240× 175× 176 with fixed hyperparameters (without cross validation).

Real Data. We also examine the performance of our method on a real medical image dataset,
including both DTI and MRI images, obtained from the Parkinson’s progression markers initiative
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Figure 5: Results with increasing number of samples on synthetic 2D data.

Table 2: Performance comparison over different DTI datasets. Column 2 indicates the used metrics
RMSE, Sparsity of Coefficients (SC) and CPU execution time (in mins). The results are averaged
over 50 random trials, with both the mean values and standard deviations (mean ± std.)

Datasets Metrics Comparative Methods
LASSO ENet Remurs orTRR GLTRM ACS SURF

DTIfact

RMSE 2.94±0.34 2.92±0.32 2.91±0.32 3.48±0.21 3.09±0.35 2.81±0.24 2.81±0.23
Sparsity 0.99±0.01 0.97±0.01 0.66±0.13 0.00±0.00 0.90±0.10 0.92±0.02 0.95±0.01

Time 6.4±0.3 46.6±4.6 161.3±9.3 27.9±5.6 874.8±29.6 60.8±24.4 1.7±0.2

DTIrk2

RMSE 3.18±0.36 3.16±0.42 2.97±0.30 3.76±0.44 3.26±0.46 2.90±0.31 2.91±0.32
Sparsity 0.99±0.01 0.95±0.03 0.37±0.09 0.00±0.00 0.91±0.06 0.93±0.02 0.94±0.01

Time 5.7±0.3 42.4±2.9 155.0±10.7 10.2±0.1 857.4±22.5 63.0±21.6 5.2±0.8

DTIsl
RMSE 3.06±0.34 2.99±0.34 2.93±0.27 3.56±0.41 3.14±0.39 2.89±0.38 2.87±0.35

Sparsity 0.98±0.01 0.95±0.01 0.43±0.17 0.00±0.00 0.87±0.03 0.90±0.03 0.93±0.02
Time 5.8±0.3 45.0±1.0 163.6±9.0 7.5±0.9 815.4±6.5 66.3±44.9 1.5±0.1

DTItl
RMSE 3.20±0.40 3.21±0.59 2.84±0.35 3.66±0.35 3.12±0.32 2.82±0.33 2.83±0.32

Sparsity 0.99±0.01 0.96±0.03 0.44±0.13 0.00±0.00 0.86±0.03 0.90±0.02 0.91±0.02
Time 5.5±0.2 42.3±1.4 159.6±7.6 26.6±3.1 835.8±9.9 96.7±43.2 3.8±0.5

Combined
RMSE 3.02±0.37 2.89±0.41 2.81±0.31 3.33±0.27 3.26±0.45 2.79±0.31 2.78±0.29

Sparsity 0.99±0.00 0.97±0.01 0.34±0.22 0.00±0.00 0.91±0.19 0.97±0.01 0.99±0.00
Time 8.8±0.6 71.9±2.3 443.5±235.7 48.4±8.0 1093.6±49.7 463.2±268.1 6.2±0.5

(PPMI) database4 with 656 human subjects. We parcel the brain into 84 regions and extract four
types connectivity matrices. Our goal is to predict the Montreal Cognitive Assessment (MoCA)
scores for each subject. Details of data processing are presented in Appendix B. We use three
metrics to evaluate the performance: root mean squared prediction error (RMSE), which describes
the deviation between the ground truth of the response and the predicted values in out-of-sample
testing; sparsity of coefficients (SC), which is the same as the S% defined in the synthetic data
analysis (i.e., the percentage of zero entries in the corresponding coefficient); and CPU execution
time. Table 2 shows the results of all methods on both individual and combined datasets. Again,
we can observe that SURF gives better predictions at a lower computational cost, as well as good
sparsity. In particular, the paired t-tests showed that for all five real datasets, the RMSE and SC of our
approach are significantly lower and higher than those of Remurs and GLTRM methods, respectively.
This indicates that the performance gain of our approach over the other low-rank + sparse methods is
indeed significant. Figure 4(c) provides the running time (log min) of all methods on the PPMI MRI
images of 240× 175× 176 voxels each, which clearly demonstrates the efficiency of our approach.
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